به کارگیری مدل میانگین متحرک خودرگرسیون انباشته فازی به منظور پیش بینی نرخ ارز
Authors
abstract
در دنیای امروز به کارگیری روشهای کمی پیش بینی در زمینه های مختلف مورد توجه گسترده قرار گرفته است. تغییرات سریع محیطهای ناشناخته در دنیای واقعی و به ویژه بازارهای مالی سبب ایجاد مشکلاتی برای پیش بینی کنندگان به منظور تأمین داده های مورد نیاز شده است. مدلهای میانگین متحرک خود رگرسیون انباشته (arima) دارای محدودیت تعداد داده های گذشته بوده و شبکه-های عصبی مصنوعی (anns) نیز به منظور حصول نتایج دقیق احتیاج به داده های زیادی داردن. مدلهای رگرسیون فازی، مدلهایی مناسب در شرایط پیش بینی با داده های قابل حصول کم اند. در این مقاله به منظور برطرف ساختن مشکل مذکور و حصول نتایج دقیقتر، مدلهای میانگین متحرک خود رگرسیون انباشته با رگرسیون فازی ترکیب شده ان. نتایج حاصله از به کارگیری روش ترکیبی در بازار ارز بیانگر کارامدی این روش در پیش بینی بازه تغییرات نرخ ارز بوده است.
similar resources
بکارگیری مدل های ترکیبی میانگین متحرک خودرگرسیون انباشته فازی احتمالی به منظور پیش بینی نرخ ارز
full text
پیش بینی قیمت نفت خام اوپک با استفاده از مدل خودبازگشتی میانگین متحرک انباشته فازی
عوامل زیادی بر قیمت نفت خام تأثیر میگذارند از این رو استفاده از یک مدل چند متغیری که تمام عوامل مؤثر بر قیمت نفت را لحاظ کرده باشد کاری دشوار است. به همین دلیل، پیشبینی این متغیر از طریق مدلهای چند متغیری بسیار دشوار است. در این حالت ممکن است استفاده از مدلهای تک متغیری روش مناسبی باشد. در این مدلها از حافظه تاریخی متغیر برای مدلسازی و پیشبینی استفاده میشود. اما یکی از محدودیتهای مدله...
full textبه کارگیری منطق فازی برای بهبود عملکرد شبکه های عصبی مصنوعی به منظور پیش بینی نرخ ارز
روش های هوش محاسباتی، همچون شبکه های عصبی مصنوعی و منطق فازی، به عنوان ابزاری محبوب به منظور پیش بینی بازارهای پیچیده ی مالی معرفی شده اند. دقت پیش بینی ها ازجمله مهم ترین مشخصه های مدل های پیش بینی است و تلاش برای بهبود بخشیدن کارایی مدل های سری های زمانی هرگز متوقف نشده است. امروزه علی رغم روش های متعدد پیش بینی سری های زمانی که در چند دهه ی اخیر پیشنهاد شده اند، هنوز پیش بینی نرخ های ارز، کا...
full textپیشبینی بار الکتریکی با بکارگیری مدلهای ترکیبی پرسپترونهای چندلایه و خودرگرسیون میانگین متحرک انباشته فصلی
امروزه صرفهجویی در زمان و اقتصاد یک کشور نیازمند برنامهریزی، تصمیمگیری و پیشبینیهای درست و منطقی در حوزههای مختلف میباشد. یکی از این حوزههای مطرح در هر کشور، پیشبینی بار الکتریکی میباشد. این کالا (الکتریسیته) با توجه به اینکه قابل ذخیرهسازی نمیباشد، پیشبینی آن با حساسیت بالاتری انجام میگیرد. همچنین علاوه بر غیرقابل ذخیرهبودن، در مصرف این کالا الگوهای مختلفی دیده میشود که مدلساز...
full textپیش بینی جریان سالانه رودخانه با استفاده از مدل خودهمبسته تجمعی میانگین متحرک و رگرسیون فازی
رشد روزافزون جمعیت و محدودیت منابع آب سطحی در کشور، لزوم پیشبینی دقیقتر مقدار آورد رودخانه را به دلیل اهمیت در برنامهریزی و مدیریت منابع آب از جمله بهرهبرداری از مخازن و طراحی سازههای کنترل سیلاب با استفاده از ابزارها و روشهای نوین مدلسازی میطلبد. در این راستا، مدلهای سری زمانی از دیرباز مورد توجه هیدرولوژیستها بودهاند. هدف این تحقیق، ارزیابی کارآیی دو رهیافت کلی مدل سری زمانی و رگرسی...
full textمقایسه عملکرد شبکه های عصبی مصنوعی(ann)و مدل میانگین متحرک انباشته اتورگرسیو (arima) در مدلسازی و پیش بینی کوتاه مدت روند نرخ ارز در ایران
نرخ ارز و نوسانات آن به عنوان یکی از مهمترین مسائل بخش بازرگانی خارجی هر کشور از اهمیت ویژهای برخوردار است. عوامل زیادی همچون عوامل اقتصادی، سیاسی، و روانی بر نرخ ارز تاثیرگذار هستند و این عوامل خود باعث ایجاد شرایط نااطمینانی بیشتر میشوند. در این راستا تلاش سیاستگذاران در کاهش این نااطمینانی از طریق پیشبینی این متغیر باکمترین خطا بوده است. شبکههای عصبی مصنوعی از قابلیت بالایی در مدلسازی...
full textMy Resources
Save resource for easier access later
Journal title:
روش های عددی در مهندسی (استقلال)جلد ۲۶، شماره ۲، صفحات ۶۷-۷۵
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023